مطالعات درخت تصمیم در برآورد ریسک ابتلا به سرطان سینه با استفاده از چند شکلی‌های تک نوکلوئیدی

نویسندگان

چکیده مقاله:

Abstract Introduction:   Decision tree is the data mining tools to collect, accurate prediction and sift information from massive amounts of data that are used widely in the field of computational biology and bioinformatics. In bioinformatics can be predict on diseases, including breast cancer. The use of genomic data including single nucleotide polymorphisms is a very important factor in predicting the risk of diseases. The number of seven important SNP among hundreds of thousands genetic markers were identified as factors associated with breast cancer. The objective of this study is to evaluate the training data on decision tree predictor error of the risk of breast cancer by using single nucleotide polymorphism genotype. Methods: The risk of breast cancer were calculated associated with the use of SNP formula:xj = fo * In human,  The decision tree can be used To predict the probability of disease using single nucleotide polymorphisms .Seven SNP with different odds ratio associated with breast cancer considered and coding and design of decision tree model, C4.5, by  Csharp2013 programming language were done. In the decision tree created with the coding, the four important associated SNP was considered. The decision tree error in two case of coding and using WEKA were assessment and percentage of decision tree accuracy in prediction of breast cancer were calculated. The number of trained samples was obtained with systematic sampling. With coding, two scenarios as well as software WEKA, three scenarios with different sets of data and the number of different learning and testing, were evaluated. Results: In both scenarios of coding, by increasing the training percentage from 66/66 to 86/42, the error reduced from 55/56 to 9/09. Also by running of WEKA on three scenarios with different sets of data, the number of different education, and different tests by increasing records number from 81 to 2187, the error rate decreased from 48/15 to 13/46. Also in the majority of scenarios, prevalence of the disease, had no effect on errors in the WEKA and code. Conclusion: The results suggest that with increased training, and thus the accuracy of prediction error decision tree to reduce the risk of breast cancer increases with the use of decision trees. In Biological data, decision trees error is high even with a 66/66% training. On the other hand by increasing the number of SNP from 4 to 7 decision tree, decision tree error dramatically decreased at 70/1% training. In general we can say that with increased training and increasing the number of SNP in the decision tree, the prediction accuracy increased and errors reduced. In the CODING and WEKA, percentage of disease prevalence had no significant effect on errors,” Because of selecting set of training and testing by systemic method “.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ارائه مدلی برای پیش‎‌بینی احتمال ابتلا به بیماری پوکی استخوان با استفاده از الگوریتم های درخت تصمیم

Background and purpose: Some diseases such as osteoporosis may have no symptom but suddenly cause fractures in different parts of body such as spine, chest, hands and legs, thereby resulting in very painful death in old people. According to a report by Iran’s ministry of health 4.6% of people aged 20 to 70 years in Iran are affected by osteoporosis in the spine. This study aimed at determining ...

متن کامل

داده کاوی بر پایه روش‌های شبکه عصبی و درخت تصمیم در تشخیص زود هنگام ریسک ابتلا به دیابت بارداری

مقدمه: امروزه در دنیای مدرن صنعتی خطر ابتلا به بیماری‌های مزمن به طرز چشمگیری افزایش یافته است. دیابت بارداری یکی از مسائل مهم در حوزه سلامت است و در صورتی که درمان نشود مشکلات و عوارض جانبی متعددی برای مادر و فرزندش به همراه دارد. این پژوهش به دنبال پیش‌بینی ریسک و هشدار به موقع در ابتلا به دیابت بارداری به مادر می‌باشد تا در اوایل بارداری از ابتلا جلوگیری به عمل آید. روش: این پژوهش که به صورت...

متن کامل

داده کاوی بر پایه روش‌های شبکه عصبی و درخت تصمیم در تشخیص زود هنگام ریسک ابتلا به دیابت بارداری

مقدمه: امروزه در دنیای مدرن صنعتی خطر ابتلا به بیماری‌های مزمن به طرز چشمگیری افزایش یافته است. دیابت بارداری یکی از مسائل مهم در حوزه سلامت است و در صورتی که درمان نشود مشکلات و عوارض جانبی متعددی برای مادر و فرزندش به همراه دارد. این پژوهش به دنبال پیش‌بینی ریسک و هشدار به موقع در ابتلا به دیابت بارداری به مادر می‌باشد تا در اوایل بارداری از ابتلا جلوگیری به عمل آید. روش: این پژوهش که به صورت...

متن کامل

اثر بربرین در تنظیم آستروسیتهای Gfap+ ناحیه هیپوکمپ موشهای صحرایی دیابتی شده با استرپتوزوتوسین

Background: Diabetes mellitus increases the risk of central nervous system (CNS) disorders such as stroke, seizures, dementia, and cognitive impairment. Berberine, a natural isoquinolne alkaloid, is reported to exhibit beneficial effect in various neurodegenerative and neuropsychiatric disorders. Moreover astrocytes are proving critical for normal CNS function, and alterations in their activity...

متن کامل

اثر بربرین در تنظیم آستروسیتهای Gfap+ ناحیه هیپوکمپ موشهای صحرایی دیابتی شده با استرپتوزوتوسین

Background: Diabetes mellitus increases the risk of central nervous system (CNS) disorders such as stroke, seizures, dementia, and cognitive impairment. Berberine, a natural isoquinolne alkaloid, is reported to exhibit beneficial effect in various neurodegenerative and neuropsychiatric disorders. Moreover astrocytes are proving critical for normal CNS function, and alterations in their activity...

متن کامل

ارزیابی متغیرهای پیش‌آگهی در رده‌بندی نرخ بقای بیماران مبتلا به سرطان کولورکتال با استفاده از درخت تصمیم

Background ; Objectives: Identifying the important influential factors is a great challenge in oncology studies. Decision tree is one of methods that could be used to evaluate the prognostic factors and classifying the patients' homogeneously. This method identifies the main prognostic factors and then determines the subgroups of patients based on those prognostic factors. The aim of this...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 25  شماره 4

صفحات  300- 310

تاریخ انتشار 2017-07

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

کلمات کلیدی

کلمات کلیدی برای این مقاله ارائه نشده است

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023